Развитие алгоритма асинхронной дифференциальной эволюции

Е.И. Жабицкая^{1,3}, М.В. Жабицкий² e-mail: Evgeniya. Zhabitskaya@jinr.ru, ¹ЛИТ ОИЯИ, Дубна

²ЛЯП ОИЯИ, Дубна

³Университет «Дубна», Дубна

Введение

Будем рассматривать задачу поиска глобального минимума $\boldsymbol{x}^* = \{x_j\}|_{j=0,...,D-1}$ функции $f(\boldsymbol{x}) \colon \Omega \subset \mathbb{R}^D \to \mathbb{R}$:

$$f(\boldsymbol{x}^*) \leqslant f(\boldsymbol{x}) \ \forall \boldsymbol{x} \in \Omega \tag{1}$$

Здесь Ω — вещественное пространство поиска решения, возможно с нелинейными ограничениями на допустимые значения параметров. В случае многомодальной функции f(x) глобальный минимум может быть найден при помощи алгоритма дифференциальной эволюции (DE) [1], одного из из активно развиваемых в последние годы [2, 3] методов поиска глобального минимума. Отсутствие необходимости вычисления производных позволяет успешно применять этот эволюционный алгоритм для решения негладких задач, в том числе большой размерности.

Предложенный авторами в [4, 5] алгоритм Асинхронной Дифференциальной Эволюции (ADE) обеспечивает, при сохранении основных положительных качеств классической Дифференциальной Эволюции (CDE), более широкие возможности распараллеливания и ускорения вычислений.

Алгоритм асинхронной дифференциальной эволюции

Метод ДЭ оперирует популяцией, каждый член которой является вектором в пространстве параметров: $P_x = \{x_i\}, x_i \in \Omega \subset \mathbb{R}^D, i = 0,1,\dots,N_p-1$. Согласно CDE [2] после инициализации начальной популяции, состоящей из N_p векторов, случайно выбранных из Ω , выполняется цикл, на каждом шаге которого ко всем членам текущей популяции применяются операции мутации, кроссовера и отбора для формирования следующего поколения. Смена поколения в CDE происходит синхронно для всех членов популяции. Описанию классической дифференциальной эволюции и ее вариантов посвящены книга [2] и обзор [3].

В новом, предложенном авторами, алгоритме ADE [4] упомянутые операторы мутации, кроссовера и отбора применяются для членов популяции без синхронизации по поколениям (см. схему

на рис. 1). После инициализации в цикле алгоритма на первом этапе выбирается целевой вектор x_i . На этапе мутации для него формируется муmантный вектор v_i путем прибавления к базовому вектору x_r разности случайно выбранных из текущей популяции векторов \boldsymbol{x}_p и \boldsymbol{x}_q с весом F. Далее, на этапе кроссовера (рекомбинации) из координат целевого и мутантного векторов строится npoбный вектор u_i : с вероятностью C_r в качестве координаты пробного вектора берется координата мутантного вектора, с вероятностью $(1-C_r)$ — целевого. Обычно дополнительно налагается условие, чтобы хотя бы одна координата в пробном векторе отличалась от соответствующей координаты целевого вектора, для чего мутируют его случайную координату $j_{\rm rand}$. Значение целевой функции в пробной точке сравнивается со значением в целевой точке. В популяции остается тот из векторов, для которого значение целевой функции лучше.

Последовательность этапов выбора целевого вектора, мутации, рекомбинации и отбора повторяется в цикле до тех пор, пока не будет выполнен один из критериев остановки. Таким образом, в алгоритме ADE нет обязательного для CDE перебора всех членов популяции. Целевые вектора, для которых будут осуществляться операции мутации, кроссовера и отбора выбираются из популяции независимо, по одному, что упрощает распараллеливание и открывает возможности

Рис. 1: Си-схема алгоритма Асинхронной Дифференциальной Эволюции (ADE).

для ускорения вычислений.

Способ выбора очередного целевого вектора является специфической чертой *ADE*. Другими факторами, определяющими конкретную стратегию поиска глобального минимума в рамках ADE, являются способ выбора базового вектора, число разностных векторов и тип кроссовера. Для идентификации различных вариантов ADE введены обозначения DE/w/x/y/z, расширяющие принятую в [2] символику. Здесь w соответствует способу выбора целевого вектора: например, это может быть случайный ("rand") или худший ("worst") член популяции. Символ x "отвечает" за способ выбора базового вектора: это может быть как случайный ("rand") или лучший ("best") член популяции, так и другие варианты стратегии. Число разностных векторов, которые добавляются к базовому при формирования мутантного вектора, соответствует y. Под z закодирован тип кроссовера. Обычно используется биномиальное (равномерное) скрещивание ("bin").

Алгоритм асинхронной дифференциальной эволюции с рестартом

Для решения практических задач алгоритм должен находить решение с вероятностью, близкой к единице. Для ДЭ вероятность сходимости к глобальному минимуму возрастает при увеличении размера популяции N_p . С другой стороны, для больших популяций характерна медленная скорость сходимости (см. рис. 2). Чтобы получить высокую вероятность нахождения глобального минимума, сохраняя приемлемую скорость сходимости, разработан алгоритм ADE с рестартом (ADE-R) [6, 7].

Рис. 2: Скорость сходимости Speed = $\langle N_{FE}^{-1} \rangle$ и вероятность сходимости P_{succ} для rand/rand/1/binстратегии метода ADE для $f_1, f_6, f_9 \& f_{11}$ размерности D=10 тестовых функций из CEC2005 [8].

ADE-R стартует с популяции небольшого размера $N_{p,\mathrm{init}}$. В течение итерационного процесса оцениваются разбросы координат членов популяции $\Delta x_j = \max_{i=0,\dots,N_p-1} \{x_{i,j}\} - \min_{i=0,\dots,N_p-1} \{x_{i,j}\},$ и значений целевой функции в популяции $\Delta f {=} \max_{i=0,\dots,N_p-1} \{f_i\} {-} \min_{i=0,\dots,N_p-1} \{f_i\}.$ При выполнении критериев рестарта

$$\exists j \quad \Delta x_j < \varepsilon_{\mathbf{x}} \max\{|x_{i,j}|\},\tag{2}$$

$$\exists j \quad \Delta x_j < \varepsilon_{\mathbf{x}} \max_i \{|x_{i,j}|\}, \tag{2}$$
 или $\Delta f < \varepsilon_{\mathbf{f}} \max_{i=0,\dots,N_p-1} \{|f_i|\}, \tag{3}$

алгоритм возобновляет вычисления с увеличенным в k раз размером популяции: $N_n^{\text{new}} = k N_n^{\text{old}}$. Таким образом, осуществляется адаптация размера популяции в соответствии со сложностью решаемой проблемы [6]. Важно заметить, что і) $\varepsilon_x \, > \, 10^{-15}, \ \varepsilon_f \, > \, 10^{-15} \, - \,$ обусловлено машинной точностью вычислений и не зависит от задачи; ii) верхние границы для ε_x , ε_f зависят от

Рис. 3: Среднее количество вычислений функции $\langle N_{FE} \rangle$, необходимое для решения задачи Розенброка f_6 (D=10), как функция ε_x и $arepsilon_f$. ADE-R/worst/best/1/bin-стратегия, k=2, $P_{\text{succ}} = N_{\text{succ}}/N_{\text{total}} = 1.$

Рис. 4: Среднее количество вычислений функции необходимое для решения задачи Розенброка f_6 (D=10) как функция ε_f (left). без использования критерия Δ_x (3); k=2. (right). ADE/worst/best/1/bin-стратегия, k=2, $P_{succ}=1$

Рис. 5: Скорость сходимости для стратегии rand/rand/1/bin для ADE и ADE-R. Для ADE: $N_p = N_p^{\rm opt}$ — зависит от целевой функции; $P_{succ} \simeq 1$ для f_1 , f_6 , f_9 и $P_{succ} < 1$ для f_{11} . Для ADE-R: $\varepsilon_x = 10^{-12}$, $\varepsilon_f = 10^{-12}$, 10^{-7} ; $N_p^{\rm init} = 10$, $P_{succ} \simeq 1 \ \forall f$.

Рис. 6: Зависимость скорости сходимости от мультипликатора популяции k для различных стратегий ADE-R, решающих задачу Розенброка f_6 .

задачи; ііі) для задач взвешенного метода наименьших квадратов $\max \varepsilon_f$ может быть оценено а priori.

На рисунках 3 и 4 представлены зависимости сходимости для ADE-R/worst/best/1/binстратегии как функции применяемых критериев рестарта. Видно, что даже очень маленькие значения ε_x и ε_f , равные значению машинного эпсилон, умноженному на $10^3\dots 10^4$, гарантируют разумную скорость сходимости.

Сравнение скорости сходимости для стратегии rand/rand/1/bin для ADE и ADE-R при двух разных значениях ε_x представлено на рис. 5

Зависимость скорости сходимости от мультипликатора популяции k также обсуждалась в работе [6]. Она представлена на рис. 6. По нашему мнению, разумными значениями для k являются значения $k \in (1.2\dots 3.0)$, причем для большинства задач $k \in [1.5, 2.0]$ будет наилучшим.

Параллельная реализация ADE

При оптимизации целевых функций, требующих значительных вычислений, выгодно перейти к параллельной реализации алгоритма ADE(рис. 7). Нами реализована параллельная версия программы в стандарте ОренМР [4] и в стандарте передачи сообщений МРІ [9, 13, 10] в рамках модели ведущий/ведомый (master/worker). Мастер оптимизации запрашивает пробные вектора из алгоритма и направляет их на расчет на ведомые процессоры. По мере расчета значений целевых функций результаты асинхронно передаются мастером в программу алгоритма. Класс ADE реализован таким образом, что для каждого пробного вектора отслеживается индекс соответствующего целевого вектора. Оператор отбора осуществляет сравнение вычисленного значения функции для пробного вектора с соответствующим значением для вектора текущей популяции с тем же индексом. Таким образом, в алгоритме корректно обрабатывается случай, когда первоначальный целевой вектор был замещен в популяции другим пробным вектором, рассчитанным с помощью более быстрого вычислительного потока. Освободившемуся ведомому процессору сразу же выставляется задание на расчет значения целевой функции следующего пробного вектора, что позволяет полностью и эффективно использовать все имеющиеся вычислительные мощности.

Для типичной оптимизационной задачи была получена модельная зависимость ускорения алгоритма ADE как функция доступного числа процессоров $N_{\rm proc}$ (рис. 8). Благодаря асинхронизации достигнуто лучшее ускорение по сравнению с классической дифференциальной эволюцией [4]. В [9] аналогичные оценки приведены для ADE-R.

В [13] (см. рис. 9) эффективность параллельной МРІ-реализации алгоритма ADE тестировалось на LINUX-кластере ЛИТ ОИЯИ. Расчет запускался многократно с одними и теми же границами начальных и допустимых значений варьируемых параметров на разном количестве вычислительных узлов: $N_{\text{proc}} \in [2; 128]$. В представ-

Рис. 7: Схема параллельной реализации алгоритма ADE

Рис. 8: Ускорение при параллельном расчете $ADE\ [4]$

Рис. 9: Среднее время $\langle T \rangle$, затраченное на вычисления (а) и ускорение (speed-up = $\frac{T^{N_{\mathrm{proc}}=2}}{T^{N_{\mathrm{proc}}}}$) (б) в зависимости от числа задействованных процессоров N_{proc} .

ленной статистике каждая комбинация запускалась N=10 или 20 раз. На рис. $9\,\mathrm{a}$) видно, что среднее время, реально затраченное на вычисления, падает практически линейно при росте числа задействованных вычислительных узлов. Ускорение вычислений (speed-up) с учетом возрастания необходимого количества вычислений функции при $N_\mathrm{proc}=128$ составило 98 ± 21 раз. Рис. $9\,\mathrm{f}$) демонстрирует близкое к линейному ускорение вплоть до $n_\mathrm{proc}=128$ параллельно задействованных вычислительных узлов.

Метод ADE-R был успешно применен при решении ряда оптимизационных задач, возникающих в реальных физических исследованиях ([11, 12, 13] и др.). Эти задачи сводились к минимизации целевых функций со сложным многомодальным или оврагоподобным рельефом, поэтому их решение классическими методами поиска локального минимума затруднено.

Методы ADE и ADE-R использовались для определения параметров микроскопического оптического потенциала упругого рассеяния π -мезонов на ядрах [11, 12].

Параллельные алгоритмы ADE и ADE-R а также ADE с адаптивным кроссовером [10] применялись при исследовании структуры однослойных везикул DMPC [13].

Заключение

Предложенный алгоритм прост в применении, имеет малое количество контрольных параметров $(N_p, F \text{ и } C_r)$, применим для решения задач большой (D = 10...100...) размерности. В ADE не используются производные, поэтому с его помощью можно решать недифференцируемые задачи. Алгоритм устойчив при оптимизации многомодальных функций. Асинхронизация ускоряет алгоритм при параллельных вычислениях, при этом сохраняются сравнимые с классической ДЭ вероятность и скорость сходимости [4]. Правильный подбор параметров алгоритма [5] и применение методов, позволяющих при необходимости возобновить вычисления [6, 7], помогают снизить вероятность вырождения и повысить вероятность сходимости к глобальному минимуму.

Список литературы

- [1] K.V. Price, R.M. Storn. // J. of Global Optimization. 1997. V. 11. P. 341.
- [2] K.V. Price, R.M. Storn, J.A. Lampinen. Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag. Berlin Heidelberg. 2005.
- [3] S. Das, P.N. Suganthan. IEEE Trans. Evol. Comput. 2011. V. 15. P. 4.
- [4] Zhabitskaya, E.I., Zhabitsky, M.V. Lecture Notes in Computer Science, Springer, 7125, 2012, pp. 328– 333.
- [5] Zhabitskaya, E.I. //Lecture Notes in Computer Science, 7125, 2012, pp. 322–327.
- [6] E. Zhabitskaya, M. Zhabitsky // I. Dimov, I. Farag, and L. Vulkov (Eds.): Fifth Conference on Numerical Analysisand Applications (NAA 2012), // LNCS 8236, pp. 555IJ561, 2013.
- [7] Жабицкая, Е.И., Жабицкий, М.В. // Труды шестнадцатой научной молодых ученых и специалистов ОИЯИ, ОМУС XVI, 2012, с. 50–53.
- [8] P.N. Suganthan, et al. Problem definitions and evaluation criteria for the CEC05 special session on real-parameter optimization. Technical report, Nanyang Technological University. Singapore. 2005.
- [9] E. I. Zhabitskaya, M. V. Zhabitsky. Математическое моделирование, Т. 24, No. 12, 2012, С. 33–37.
- [10] E. I. Zhabitskaya, M. V. Zhabitsky. Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation, USA, New York, 2013, pp. 455–462.
- [11] Жабицкая, Е.И., Жабицкий, М.В. // Труды шестнадцатой научной молодых ученых и специалистов ОИЯИ, ОМУС XVI, 2012, с. 46–49.
- [13] E. Zhabitskaya, E. Zemlyanaya, M. Kiselev // MMCP-2013. Book of Abstracts, 2012 c. 189.